The Rough Guide to the OWL API: a tutorial
Version 3.2.3 for OWL 2

Ignazio Palmisano & the OWL API team

Department of Computer Science
University of Manchester

Contacts:
For praises: owlapi-developer@lists.sourceforge.net
For complaints, errors, etc: palmisai@cs.man.ac.uk
For feature requests & bugs: http://owlapi.sourceforge.net trackers

5 June 2011 / OWLED

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Outline

0 Introduction: what’s what and what’s an ontology

e Loading, modifying, saving, checking an ontology

e Queries

@ Inspect asserted axioms
@ Using a reasoner

e Outside the core OWL API: extra modules
@ Wait, who changed my ontology? Concurrent access
@ Modularization

e Applications using the OWL API
@ Protégé
@ OPPL: OWL PreProcessing Language

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Introduction: what's what and what'’s an ontology

Where was the APl born? Where is it now?

@ WonderWeb
o http://wonderweb.semanticweb.org/
o first incarnation of the API in this EU STREP project, dated 2003
e CO-ODE
o http://www.co-ode.org/
o further support and development in this UK JISC project, until
2009
@ currently hosted on SourceForge at http://owlapi.sourceforge.net
o available under LGPL and/or Apache license
o afew developers (19 at last count) scattered around, highest
concentration at University of Manchester

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Introduction: what's what and what'’s an ontology

What's OWL 27

OWL 2

The OWL 2 Web Ontology Language, informally OWL 2, is
an ontology language for the Semantic Web with formally de-
fined meaning.

from: http://www.w3.org/TR/owl2-overview

Description Logics are the formal languages underlying OWL 2
OWL 2 Profiles

Not all DLs are created equal:
OWL 2 EL, OWL 2 QL, OWL 2 RL,
OWL 1 DL (slightly enriched in OWL 2 DL)

from: http://www.w3.org/TR/owl2-profiles/#Computational_Properties

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Introduction: what's what and what'’s an ontology

What’s an ontology?

I’'m not answering THAT. ..

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Introduction: what's what and what'’s an ontology

What's an ontology? Take two

For the purposes of the OWL API:

@ An OWL ontology is a specification of a conceptualization (as
defined by Gruber)
@ An OWL ontology is structured as described in the OWL 2 specs

I’'m a Java developer (get me out of here)

In the OWL API, an OWLOntology is an interface, modelling a set
of logical and nonlogical OWLAx i oms, with a name (an IRTI), an (op-
tional) physical location and convenience methods to retrieve such ax-
ioms.

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Introduction: what's what and what'’s an ontology

OWL Axioms, Classes, Properties, Individuals and
Entities. . .

@ OWLEntity: anything that can be identified with an IRT, i.e.,
class names, data and object properties (and annotation
properties) and named individuals

@ OWLAnonymousIndividual, OWLClassExpression,
OWLPropertyExpression: unnamed individuals, class
expressions such as restrictions, property expressions such as
the inverse of a property

@ OWLAnnotation: an annotation for any entity, ontology,
expression or axiom; characterized by an
OWLAnnotationProperty and an
OWLAnnotationValue

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Introduction: what's what and what'’s an ontology

OWL Axioms, Classes, Properties, Individuals and
Entities. . .

@ OWLAx1om: the basic unity
e TBox axioms describe relations between classes and class
expressions (equivalence, subsumption, disjointness)
o ABox axioms (assertions) describe relations between individuals
and between individuals and classes/class expressions
o RBox axioms describe relations between properties

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Introduction: what's what and what'’s an ontology

How do | build an object of type. .. ?

@ OWLOntologies are created by OWLOntologyManagers
@ All other interfaces are built using OWLDataFactory

e OWLDataFactory is an interface itself
o A few implementations available: with and without cache, and
experiments with threadsafe/memory friendly versions

@ Binding to an implementation

e Only binding needed: OWLOntologyManager
e OWLManager inthe apibinding package
e OWLDataFactory is bound in OWLManager for convenience

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Introduction: what's what and what'’s an ontology

A Visitor to visit them all

@ All important interfaces accept two kinds of visitor
e ClassNameVisitor: visitor stores a value or performs an action
e ClassNameVisitorEx: visitor returns a value
@ Most Visitor interfaces have a base implementation
o VisitorAdapter
o all methods implemented as empty ones
e Developers only need to override methods they need

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Loading or creating an ontology

OntologyCreation

OWLOntologyManager m = create();
OWLOntology o = m.createOntology (example iri);
assertNotNull (o) ;

OntologyLoading

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);
assertNotNull (o) ;

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

A few helpers

@ Code snippets from TutorialSnippets. java
@ Real code (it runs, | promise)
@ Box title corresponds to JUnit test name

TutorialSnippets looks like this. . .

public class TutorialSnippets extends TestCase ({
public static final IRI pizza iri = IRI
.create ("http://www.co—-ode.org/ontologies/pizza/pizza.owl");
public static final IRI example iri = IRI
.create ("http://www.semanticweb.org/ontologies/ont.owl");
OWLDataFactory df = OWLManager.getOWLDataFactory();
public OWLOntologyManager create() {
OWLOntologyManager m =
OWLManager .createOWLOntologyManager () ;
m.addIRIMapper (new AutoIRIMapper (
new File("materializedOntologies"), true));
return m;

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Alternative loading methods. ..

OntologyLoadingFromStringSource

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);
assertNotNull (o) ;
StringDocumentTarget target = new StringDocumentTarget () ;
m.saveOntology (o, target);
m.removeOntology (o) ;
OWLOntology 02 = m

.loadOntologyFromOntologyDocument (

new StringDocumentSource (target.toString()));

assertNotNull (o2) ;

@ OWLOntologyDocumentSource is an interface for
document sources, e.g., readers
@ OWLOntologyDocumentTarget is an interface for
document destinations, e.g., writers

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Alternative loading methods. ..

IRIMapper

OWLOntologyManager m = OWLManager.createOWLOntologyManager () ;

File output = File.createTempFile ("saved pizza", "owl");
IRI documentIRI = IRI.create (output);

SimpleIRIMapper mapper =
new SimpleIRIMapper (example_save_iri, documentIRI);

m.addIRIMapper (mapper) ;

File localFolder = new File("materializedOntologies");

m.addIRIMapper (new AutoIRIMapper (localFolder, true));

OWLOntology o = m.createOntology (example_save_iri);

m.saveOntology (o) ;

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Adding axioms to an ontology

AddAxioms

OWLOntologyManager m = create();
OWLOntology o = m.createOntology(pizza_iri);

OWLClass clsA df.getOWLClass (IRI.create(pizza_iri + "#A"));
OWLClass clsB = df.getOWLClass (IRI.create(pizza iri + "#B"));

OWLAxiom axiom = df.getOWLSubClassOfAxiom(clsA, clsB);
AddAxiom addAxiom = new AddAxiom (o, axiom);
m.applyChange (addAxiom) ;

RemoveAxiom removeAxiom = new RemoveAxiom(o,axiom);
m.applyChange (removeAxiom) ;

MANCHESTER
1824

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Various kinds of changes. .. SWRL rules

OWLOntologyManager m = create();
OWLOntology o = m.createOntology (example_ iri);

OWLClass clsA = df.getOWLClass (
IRI.create (example iri + "#A"));
OWLClass clsB = df.getOWLClass (
IRI.create (example iri + "#B"));
SWRLVariable var = df.getSWRLVariable (
IRI.create (example iri + "#x"));
SWRLClassAtom body = df.getSWRLClassAtom(clsA, var);
SWRLClassAtom head = df.getSWRLClassAtom(clsB, var);
SWRLRule rule = df.getSWRLRule (Collections.singleton (body),
Collections.singleton (head));
m.applyChange (new AddAxiom(o, rule));

MANCHESTER
1824

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Various kinds of changes. .. Assertions

IndividualAssertions

OWLOntologyManager m = create();
OWLOntology o = m.createOntology (example_ iri);

OWLIndividual matthew = df.getOWLNamedIndividual (
IRI.create (example_ iri + "#matthew"));

OWLIndividual peter = df.getOWLNamedIndividual (
IRI.create (example iri + "#peter"));

OWLObjectProperty hasFather = df.getOWLObjectProperty (
IRI.create (example iri + "j#hasFather"));

OWLAxiom assertion = df.getOWLObjectPropertyAssertionAxiom (
hasFather, matthew, peter);

AddAxiom addAxiomChange = new AddAxiom(o, assertion);

m.applyChange (addAxiomChange) ; @
Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Various kinds of changes. .. Delete individuals

Delete

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_iri);

OWLEntityRemover remover = new OWLEntityRemover (m,
Collections.singleton(o));
int previous = o.getIndividualsInSignature() .size();

for (OWLNamedIndividual ind : o.getIndividualsInSignature())
ind.accept (remover) ;

m.applyChanges (remover.getChanges());

assertTrue (previous > o.getIndividualsInSignature() .size());

MANCHESTER.
1824
Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Various kinds of changes. . . Existential restrictions

AddSomeRestriction

OWLOntologyManager m = create();
OWLOntology o = m.createOntology (example_iri);

OWLObjectProperty hasPart = df.getOWLObjectProperty (
IRI.create (example_iri + "j#hasPart"));

OWLClass nose = df.getOWLClass (
IRI.create (example_iri + "#Nose"));

OWLClassExpression hasPartSomeNose =

df .getOWLObjectSomeValuesFrom(hasPart, nose);
OWLClass head =

df.getOWLClass (IRI.create (example iri + "#Head"));

OWLSubClassOfAxiom ax =
df .getOWLSubClassOfAxiom(head, hasPartSomeNose);
m.applyChange (new AddAxiom (o, ax));

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Various kinds of changes. .. Datatype restrictions

DatatypeRestriction

OWLOntologyManager m = create();
OWLOntology o = m.createOntology (example iri);

OWLDataProperty hasAge = df.getOWLDataProperty (
IRI.create (example_iri + "#hasAge"));

OWLDataRange greaterThanl8 = df.getOWLDatatypeRestriction(
df .getIntegerOWLDatatype (), OWLFacet.MIN INCLUSIVE,
df.getOWLLiteral (18));

OWLClassExpression adultDefinition =
df .getOWLDataSomeValuesFrom(hasAge, greaterThanl8);
OWLClass adult = df.getOWLClass (IRI.create(
example_iri + "#Adult"));
OWLSubClassOfAxiom ax =
df .getOWLSubClassOfAxiom(adult, adultDefinition);

m.applyChange (new AddAxiom (o, ax)); _@

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Various kinds of changes. .. Add a comment (or any
annotation)

Comment

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);

OWLClass pizzaCls = df.getOWLClass (
IRI.create(pizza iri + "#Pizza"));

OWLAnnotation commentAnno = df.getOWLAnnotation (
df .getRDFSComment (),

df.getOWLLiteral ("A class which represents pizzas", "en"));

OWLAxiom ax = df.getOWLAnnotationAssertionAxiom (
pizzaCls.getIRI(), commentAnno);

m.applyChange (new AddAxiom (o, ax)); @
Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Various kinds of changes. .. Add version info

Versionlnfo

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);

OWLLiteral 1lit =
df .getOWLLiteral ("Added a comment to the pizza class");

OWLAnnotationProperty owlAnnotationProperty =
df .getOWLAnnotationProperty (
OWLRDFVocabulary.OWL _VERSION_INFO.getIRI());
OWLAnnotation anno =
df .getOWLAnnotation (owlAnnotationProperty, 1lit);

m.applyChange (new AddOntologyAnnotation (o, anno));

MANCHESTER
1824

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Save changes to an ontology

SaveOntology

OWLOntologyManager m = create();

OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);
assertNotNull (o) ;

File output = File.createTempFile ("saved pizza", "owl");

IRI documentIRI2 = IRI.create (output);

m.saveOntology (o, new OWLXMLOntologyFormat (), documentIRI2);

m.saveOntology (o, documentIRI2);

=]

.saveOntology (o, new SystemOutDocumentTarget());

m.removeOntology (o) ;

MANCHESTER
1824

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Loading, modifying, saving, checking an ontology

Check OWL profile violations

CheckProfile

OWLOntologyManager m = create();
OWLOntology o = m.createOntology(pizza_iri);

OWL2DLProfile profile = new OWL2DLProfile();

OWLProfileReport report = profile.checkOntology (o) ;

for (OWLProfileViolation v:report.getViolations()) {
System.out.println(v);

}

MANCHEST

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries ; i :
Using a reasoner

Explore classes

ShowClasses

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);
assertNotNull (o) ;

for (OWLClass cls : o.getClassesInSignature())
System.out .println(cls);

AssertedSuperclasses

OWLClass clsA = df.getOWLClass (IRI.create (example_iri + "#A"));
Set<OWLClassExpression> superClasses = clsA.getSuperClasses (o) ;

Set<OWLSubClassOfAxiom> sameSuperClasses = o
.getSubClassAxiomsForSubClass (clsA);
assertEquals (superClasses.size (), sameSuperClasses.size()); %

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries ; i :
Using a reasoner

Walking an ontology

ologyWalker

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);

OWLOntologyWalker walker =
new OWLOntologyWalker (Collections.singleton(o));

OWLOntologyWalkerVisitor<Object> visitor =

new OWLOntologyWalkerVisitor<Object> (walker) ({

@Override

public Object visit (OWLObjectSomeValuesFrom desc) {
System.out.println(desc);
System.out.println (" " + getCurrentAxiom());
return null;
}

}i

walker.walkStructure (visitor) ;

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries ; i :
Using a reasoner

Merge ontologies

MergedOntology

OWLOntologyManager m = create();
OWLOntology ol = m.loadOntology (pizza_iri);
OWLOntology o2 = m.loadOntology (example_ iri);

OWLOntologyMerger merger = new OWLOntologyMerger (m) ;

IRI mergedOntologyIRI =

IRI.create ("http://www.semanticweb.com/mymergedont") ;
OWLOntology merged = merger.createMergedOntology (m,
mergedOntologyIRI) ;
assertTrue (merged.getAxiomCount () > ol.getAxiomCount ());
assertTrue (merged.getAxiomCount () > o2.getAxiomCount ());

MANCHESTER
1824

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries .
Using a reasoner

Search for restrictions. . .

LookupRestrictio

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);

for (OWLClass c : o.getClassesInSignature()) {

RestrictionVisitor visitor =

new RestrictionVisitor (Collections.singleton(o));

for (OWLAxiom ax: o.getSubClassAxiomsForSubClass(c)) {
ax.getSuperClass () .accept (visitor);

}

System.out .println("Properties for " + labelFor(c, o0));

for (OWLObjectPropertyExpression prop:
visitor.getRestrictedProperties()) {

System.out.println (" " + prop);

}

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries N
Usin easoner

Search for restrictions. . .

RestrictionVisitor extends an adapter class:
private class RestrictionVisitor extends
OWLClassExpressionVisitorAdapter {
A few internals omitt
public Set<OWLObjectPropertyExpression>
getRestrictedProperties() { return properties; }
public void visit (OWLClass desc) {
if (!'classes.contains(desc)) {
classes.add (desc);
for (OWLOntology ont : onts)
for (OWLSubClassOfAxiom ax:
ont .getSubClassAxiomsForSubClass (desc))
ax.getSuperClass () .accept (this);
}
}
public void visit (OWLObjectSomeValuesFrom desc) {
properties.add(desc.getProperty());
}

}

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms
Using a reasoner

Queries

Search annotations

ReadAnnotations

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);

for (OWLClass cls : o.getClassesInSignature()) {

for (OWLAnnotation annotation : cls
.getAnnotations (o, df.getRDFSLabel())) {
if (annotation.getValue() instanceof OWLLiteral) {
OWLLiteral val = (OWLLiteral) annotation.getValue();

if (val.hasLang("pt'"))
System.out.println(cls +
" labelled " + val.getLiteral());

}
MANCHESTER
1824

DON'T PANIC - The Rough Guide to the OWL API

Ignazio Palmisano & the OWL API team

Inspect asserted axioms

Queries i :
Using a reasoner

Change default rendering formats. . .

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);

m.addOntologyStorer (new OWLTutorialSyntaxOntologyStorer());

m.saveOntology (o, new OWLTutorialSyntaxOntologyFormat (),
new SystemOutDocumentTarget ());

MANCHEST

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries N
Using a reasoner

Change default rendering formats. . .

Classes needed:
@ OWLTutorialSyntaxOntologyStorer: the
OWLOntologyStorer implementation
o refers OWLTutorialSyntaxObjectRenderer and
OWLTutorialSyntaxRenderer
e renders an ontology as an HTML page'
@ OWLTutorialSyntaxOntologyFormat: a
PrefixOWLOntologyFormat extension

MAN(CH.]EéEER

Too long to turn into slides, but source available - ask to switch-to Eclipse

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries N
Using a reasoner

Visiting labels

class LabelExtractor extends OWLObjectVisitorExAdapter<String>
implements OWLAnnotationObjectVisitorEx<String> {
@Override
public String visit (OWLAnnotation annotation) {
if (annotation.getProperty () .isLabel()) {
OWLLiteral c = (OWLLiteral) annotation.getValue();
return c.getLiteral();
}

return null;

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries N
Using a reasoner

Looking for entity annotations

private LabelExtractor le = new LabelExtractor();

private String labelFor (OWLEntity clazz, OWLOntology o) {
Set<OWLAnnotation> annotations = clazz.getAnnotations(o);
for (OWLAnnotation anno : annotations) {
String result = anno.accept (le);
if (result != null) {
return result;

}
return clazz.getIRI() .toString();

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries ki
Using a reasoner

DL reasoners and the OWL API

@ OWLReasoner and OWLReasonerFactory
@ A few OWL DL reasoners available
e HermiT
o FaCT++
o Pellet
o Reasoners available through OWLLink (e.g., RacerPro)
e New kid on the block: JFact (a port of FaCT++ to Java)

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms
Using a reasoner

Queries

Hierarchy printing. . .

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza iri);

OWLClass clazz = df.getOWLThing();
System.out.println("Class : " + clazz);

printHierarchy (o, clazz, new HashSet<OWLClass>());

I\'SANCH_E%

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries ki
Using a reasoner

Hierarchy printing. . .

Helper method:
public void printHierarchy (OWLReasoner r, OWLClass clazz,
int level, Set<OWLClass> visited) throws OWLException {
ly print satisfiable classes to skip Nothing

if (!visited. contalns(clazz) && reasoner.isSatisfiable(clazz)) {

visited.add(clazz);

for (int i = 0; i < level x 4; i++) {
System.out.print (" ");

}

System.out .println(labelFor (clazz, r.getRootOntology()));

Find the children and recurse

NodeSet<OWLClass> classes = r.getSubClasses(clazz, true);

for (OWLClass child : classes.getFlattened()) {
printHierarchy(r, child, level + 1);

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries ki
Using a reasoner

List unsatisfiable classes

nsatisfiableClasses

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);

OWLReasoner reasoner = reasonerFactory.createReasoner (o) ;
reasoner.precomputeInferences (InferenceType.CLASS_ HIERARCHY) ;
assertTrue (reasoner.isConsistent ());

Node<OWLClass> bottomNode = reasoner.getUnsatisfiableClasses();
System.out.println("Unsatisfiable classes:");

for (OWLClass cls : bottomNode.getEntitiesMinusBottom())
System.out.println(labelFor(cls, o));

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries ki
Using a reasoner

Direct subclasses

escendants

OWLOntologyManager m = create();

OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);
OWLReasoner r = reasonerFactory.createReasoner (o) ;
r.precomputeInferences (InferenceType.CLASS HIERARCHY) ;

for (OWLClass c : o.getClassesInSignature()) {

NodeSet<OWLClass> subClasses = r.getSubClasses(c, true);
for (OWLClass subClass : subClasses.getFlattened())
System.out.println (labelFor (subClass, o)
+ " subclass of " + labelFor(c, 0));

MANCHESTER
1824

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms
Using a reasoner

Looking up instances and property values

Petinstances

for (OWLClass c : o.getClassesInSignature()) {

for (OWLNamedIndividual i
r.getInstances(c, true).getFlattened()) {
System.out.println(labelFor (i, o) +":"+ labelFor(c, 0));

for (OWLObjectProperty op:

o.getObjectPropertiesInSignature()) {

NodeSet<OWLNamedIndividual> petValuesNodeSet =
r.getObjectPropertyValues (i, op);

for (OWLNamedIndividual value
petValuesNodeSet .getFlattened())
System.out.println(labelFor(i, o) + " " +

labelFor(op, o) + " " + labelFor (value, 0));

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries ki
Using a reasoner

Compute inferences

InferredOntology

List<InferredAxiomGenerator<? extends OWLAxiom» gens =
Collections.singletonList (
new InferredSubClassAxiomGenerator());

OWLOntology infOnt = m.createOntology();

InferredOntologyGenerator iog =

new InferredOntologyGenerator(r, gens);
jog.fillOntology(m, infOnt);

MANCHEST

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted axioms

Queries ki
Using a reasoner

Necessary property assertions. ..

String iri = pizza_ iri + "#Margherita";

OWLClass margherita = df.getOWLClass (IRI.create(iri));
printProperties(m, o, r, margherita);

MANCHESTER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Inspect asserted a

Queries ki
Using a reasoner

Necessary property assertions. . . helper

Prints out the properties that instances must have
private void printProperties
OWLOntologyManager man, OWLOntology o,
OWLReasoner reasoner, OWLClass cls) {
System.out.println("Properties of " + cls);
for (OWLObjectPropertyExpression prop
o.getObjectPropertiesInSignature()) {
To test 1 an instance of A MUST have a p-filler,
check for t satisfiability of A an 1ot (some p i)
“his is unsatisfiable, then a p-filler is necessary
OWLClassExpression restriction =
df .getOWLObjectSomeValuesFrom(prop, df.getOWLThing());
OWLClassExpression intersection =
df .getOWLObjectIntersectionOf (cls,
df .getOWLObjectComplementOf (restriction));
if (!'reasoner.isSatisfiable (intersection))
System.out.println("Instances of "
+ cls + " must have " + prop);

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Wait, who changed my ontology? Concurrent access

Outside the core OWL API: extra modules etLSl

Concurrent access: Default implementations

@ OWLOntology contains maps

o OWLAxioms indexed by OWLEntity in the signature
¢ OWLAxioms indexed by AxiomType
e ...and more

@ OWLOntologyManager contains maps and sets

@ OWLOntologies indexed by IRI
e OWLOntologies indexed by OWLOntologyFormat
e ...and more

@ OWLDataFactory uses caches to internalize OWLEntities

@ All these are weak spots
@ The list is not exhaustive

@ Transactions: a series of changes instead of a single change?,
Rollback if the last one fails?

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Wait, who changed my ontology? Concurrent access

Outside the core OWL API: extra modules etLSl

Wait, who changed my ontology?

When multithread is the issue. ..
@ Diagnosis can be hard

@ ConcurrentModificationException is common but not
reliable

e NullPointerException happens sometimes

e Threading issues masquerading as parsing errors

@ Fixes can slow things down

@ Immutability a great help

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Wait, who changed my ontology? Concurrent access

Outside the core OWL API: extra modules etLSl

Which solutions are available?

@ Synchronize everything? Sloww w

@ Locks? Explicit or implicit? ReadWriteLocks?
@ Caches are a vulnerability. Drop them?

@ Transaction support. .. hard to figure out

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Wait, who changed my ontology? Concurrent access

Outside the core OWL API: extra modules etLSl

The implConcurrent module

@ Alternate implementation for OWLOntologyManager,
OWLOntology, OWLDataFactory
@ Alternate implementation binding: ThreadSafeOWLManager
e Alternate implementations can be configured via
OWLImplementationBinding
e OWLDataFactory implementations: cacheless, with explicit
locks, ConcurrentHashMaps and LRU partial caches

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Wait, who changed my ontology? Concurrent access
Modulariza

Outside the core OWL API: extra modules

How do | pick and mix?

ThreadSafeBinding
public final class ThreadSafeBinding implements

OWLImplementationBinding {
public OWLOntologyManager getOWLOntologyManager (

OWLDataFactory d) {
return new LockingOWLOntologyManagerImpl (d);

}
public OWLOntology getOWLOntology (

OWLOntologyManager oom, OWLOntologyID id) {
return new LockingOWLOntologyImpl (oom, id);

}
public OWLDataFactory getOWLDataFactory () {

return DataFactoryCSR.getInstance();
}

}
MANCHESTER
1824

DON'T PANIC - The Rough Guide to the OWL API

Ignazio Palmisano & the OWL API team

Wait, who changed my ontology? Concurrent access

Outside the core OWL API: extra modules etLSl

Does it work? Is it fast? Where’s the catch?

@ Concurrent implementation passes same tests as default

@ Extra tests run same operations multiple times on multiple
threads

@ Speed varies, depending on choices - usually not much worse

Any catch?

@ No transaction support
e A sequence of changes won't roll back if the last one fails
o A thread cannot lock an ontology or a manager and call a
sequence of methods
e Threads can step on each other’s toes

@ Protégé offers some support for this ﬂ

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Wait, who changed my ontology? Concurrent access

Outside the core OWL API: extra modules flcciia o

Modularization

@ Ontology modularization is a broad topic
@ Locality based modularization
e Many people at Manchester working on it
e Start from a signature S (set of IRIs) from O
e Compute a set of axioms M
e Any expression built with elements from S has the same
interpretation in O and in M
e M is smaller than O — reasoning is faster(ish)

@ The only challenge left to the user is how to choose the
signature. ..

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Wait, who changed my ontology? Concurrent access

Outside the core OWL API: extra modules flcciia o

Modularization example

Modularization

OWLOntologyManager m = create();
OWLOntology o = m.loadOntologyFromOntologyDocument (pizza_ iri);

OWLClass topping =
df .getOWLClass (IRI.create(pizza iri + "#PizzaTopping"));

Set<OWLEntity> seedSig = new HashSet<OWLEntity>();
OWLReasoner reasoner = reasonerFactory.createReasoner (0);
seedSig.add (topping) ;
seedSig.addAll (reasoner

.getSubClasses (ent.asOWLClass (), false) .getFlattened());

SyntacticLocalityModuleExtractor sme =
new SyntacticlocalityModuleExtractor (m, o, ModuleType.STAR);
Set<OWLAxiom> mod = sme.extract (seedSig);

System.out.println("Module size "+ mod.size()); _@

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Protégé
OPPL: OWL PreProcessing Language

Applications using the OWL API

Protégé: You may have heard of it. ..

Protégé is a well known ontology editor
@ http://protege.stanford.edu
@ it tracks the latest OWL API developments very closely
@ it provides a lot of useful bug reports
@ Thanks, Timothy :-)

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Protégé
OPPL: OWL PreProcessing Language

Applications using the OWL API

Looks like this. ..

- ——— - -
3 = * WA
P ER vew Remre Toos Resda esw Mo
<o (G Ea]
| At iy | s | Cineses | Gopc ropevis | Gt gt | v | OALY | 0L Gamry | crcent

— = = [-
¥ ®Thing — e
¥ ®DemainConcept b€ (Bl Al Ad b4 R AE

Country -

Paa F@ Nameapeza

inte s
MeatyPizza /
Namedpizza
WegetarianPizza | \
Realtaiianpiz \
Spieypizea |
SpicyPizzaEquivalent 1
ThinAndCrispyPizza i \
VegstarianPizss g v J
VegetarianuzaE quivalentt ! 4
VegetananpieesE quivalent A |
» OPizzaBase "
1

naCsoyP

\
» ©PizzaTopping
@ ValuePantition

0 |
/
i

o waTopoim

' sperioppng

Touse e reascrer cick Reascres.s or Remsoeer ¢! Srow nerences

AP tea ON'T PANIC - The Ro

Protégé
OPPL: OWL PreProcessing Language

Applications using the OWL API

OPPL: OWL PreProcessing Language (2)

@ http://oppl2.sourceforge.net

@ Add/remove axioms from ontologies

@ Can be used with or without a reasoner
@ Plugs into Protégé

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Protégé
OPPL: OWL PreProcessing Language

Applications using the OWL API

A few OPPL scripts. ..

Declare matched classes disjoint
?x:CLASS, ?y:CLASS
SELECT ?x subClassOf gender,
?y subClassOf gender
WHERE ?x != ?y
BEGIN
ADD ?x disjointWith ?y
END;

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Protégé
OPPL: OWL PreProcessing Language

Applications using the OWL API

A few OPPL scripts. ..

Add restrictions
?x:CLASS
SELECT ?x subClassOf person
BEGIN
ADD ?x subClassOf has_age some int
END;

I\'L‘\NCHHE:%ER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Protégé
OPPL: OWL PreProcessing Language

Applications using the OWL API

A few OPPL scripts. ..

Assertions can be changed too

?country:INDIVIDUAL [instanceOf Country],
?adiacentCountry: INDIVIDUAL [instanceOf
Country]
SELECT ?country adjacentTo ?adiacentCountry
BEGIN
REMOVE ?country adjacentTo ?adiacentCountry,
ADD ?country instanceOf
hasLandBoundary some (LandBoundaryFragment
and boundaryOf value ?adiacentCountry)
END;

MANCHESTER
1824

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Protégé
OPPL: OWL PreProcessing Language

Applications using the OWL API

Patterns

@ OPPL scripts without a SELECT section
@ Variable binding done manually

@ Useful for more localized tasks

@ Available in Protégé too

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

Protégé
OPPL: OWL PreProcessing Language

Applications using the OWL API

Question time

Questions?

Contacts:

For praises: owlapi-developer@lists.sourceforge.net

For complaints, errors, etc: palmisai@cs.man.ac.uk

For feature requests & bugs: http://owlapi.sourceforge.net trackers

MAN(CH.]EéEER

Ignazio Palmisano & the OWL API team DON'T PANIC - The Rough Guide to the OWL API

	Introduction: what's what and what's an ontology
	Loading, modifying, saving, checking an ontology
	Queries
	Inspect asserted axioms
	Using a reasoner

	Outside the core OWL API: extra modules
	Wait, who changed my ontology? Concurrent access
	Modularization

	Applications using the OWL API
	Protégé
	OPPL: OWL PreProcessing Language

